
CMSC262 DS/Alg Applied Blaheta

Project 4: Registrar
Due: 26 November 2018

Registration season is upon us, and it serves as the inspiration for the fourth
project in this course: maintaining a searchable and updatable database of
course offerings and registrations. The universe here is somewhat simpli-
fied, but broadly similar to what the registrar at Longwood (and any other
college) needs to maintain.

Objectives

In the course of this project, the successful student will:

• use a published API to access a library,

• design a relational data schema with multiple tables, and

• write complex queries in a standard database query language (SQL).

The data

The central data for the system will be the courses themselves. As at Long-
wood, the courses will have titles as well as course numbers and sections—so,
CMSC 201-1 “Computer organization” would be a perfectly valid course.
As a bit of a simplification, we’ll say that all courses are either Monday-
Wednesday-Friday or Tuesday-Thursday, and each course meets during ex-
actly one numbered period (1–8 on MWF and 1–5 on TT). Courses have a
maximum number of enrolled students (e.g. 20 or 30), and when that many
students are in the course, the course is full.

Each course is taught by only one professor. You can assume that a profes-
sor’s full name is unique; but each professor has a “display name” as well,
which is often their last name (if that is unique in the system, e.g. “Blaheta”)
but may have a disambiguating initial or something (e.g. “W. Smith”). The
display name will be what you want to show in most listings.

Students will, in general, sign up for more than one course. All their courses
will meet at distinct times.



CMSC262 Project 4: Registrar 26 November 2018

The requests

Students need to be able to register for classes. In addition, they need to be
able to get useful listings of courses, as well as (after registration) a useful
list of the courses they actually signed up for.

Professors need to be able to get a listing of courses they’re teaching, and
for individual courses, they need to be able to get a listing of all the students
in the course.

The registrar herself need to enter and modify data, and create summary
reports such as student transcripts.

See the “rubric” section at the end of this handout to get more specific
details on some of these requests.

Prep work

Your initial work on this project involves getting your programming language
of choice to successfully talk to a database file through the SQLite API. This
is in some ways more complicated than previous prep work (although more
amenable to following tutorials, and see the back pages of this handout for
additional help), but it’s absolutely prerequisite to getting anything else in
the project done, so I’ve front-loaded it.

For the prep work, you should have:

• A .db file in SQLite format that contains sample data: at least one
table, with at least two columns and at least three rows,

• A program that, when compiled and run with the .db file as its
command-line argument, accesses that file using the SQLite API for
that language, runs “SELECT * FROM” the table in the file, and prints
the results; and then reads a single word from standard input and runs
a “SELECT * FROM ... WHERE ...” query based on that word, and
prints the results.

• A readme file that says how to compile and run that program, even if
this is just repeating back instructions I’ve given you at some point.

The database file can be built by hand through running the sqlite3 inter-
active command-line program. The program will have the following broad

2



CMSC262 Project 4: Registrar 26 November 2018

structure:

Import/include necessary libraries or headers
Open connection to given database file
Prepare SQL statement object representing SELECT query
Bind parameter in the prepared statement to the value read from input
Execute the query statement
While there are rows left in the result,

access and print the columns in the current row
Clean up the statement object
Close the connection

See the back pages of this handout for some info on how to get started with
these in a few common languages.

This work is due next Wednesday at 8pm. You’ll have a chance to ask
questions about it in class on Wednesday to clear up any last-minute issues,
but you really don’t want to wait until then to start it. When you’re ready
to hand it in, use the handin script as described at the end of this document.

Design work

Once you’ve got the shell of the program running (or perhaps while you are
working on that, but the design work depends on course content we won’t
cover until next week), you can start thinking about the query and schema
design.

1. Devise a short list of courses and other data that can serve to fuel
test cases. Each type of data should in general have just two or three
instances, to facilitate easy typing and editing and quick queries.

2. Reflect on your data and write out your database schema: for each
table, be sure to name each column and give it an SQL-appropriate
data type. As you edit your schema, you may feel the need to update
your examples from the previous part, and vice versa—this is fine! But
when you’re done, the schema should be consistent with the sample
data.

3



CMSC262 Project 4: Registrar 26 November 2018

3. Draw an entity-relationship diagram that corresponds to your data
and schema. Again, as you work on this you may want to revise the
other parts; just make sure they are all consistent with each other
when you’re done.

4. Reread the section “The requests” from the beginning of the handout
and look through the rubric at the end, and write out an interaction
scenario between a student and your program—from the time they
sit down, what does the program ask them? What do they ask the
program? How should the program respond to their request? What
changes occur as a result? Use your data example as a starting point
and be as specific as possible.

Final version

A full-credit final version will be a complete, non-buggy, working imple-
mentation of the database system described here, TOGETHER WITH con-
vincing proof that it is correct. When run, it should be provided with one
command line argument—the name of the database file containing the reg-
istrar data.

Your front end, written in the high-level language of your choice (e.g. C++,
Java, etc), will use a standard database API to interact with a database in
SQLite format, and print out results. Some statements will be commands
that cause an update to the system; others will be SELECT queries, whose
output may be in table form but should still reflect the user’s understanding
of the data.

That means:

• DO use database queries to do things like provide the user with a valid
list of options to select from;

• DO NOT just print out a bunch of tables and assume the user can
“just figure it out”;

• DO NOT just make a bunch of SELECT * queries and read them into
maps and vectors and combine and aggregate information in the front
end; and

4



CMSC262 Project 4: Registrar 26 November 2018

• ESPECIALLY DO NOT overly subject your users to weird artifacts
of how things are stored internally, such as cryptic ID numbers or the
fact that some data is spread over multiple tables.

It’s ok if the output isn’t especially formatted, but the response to a query
should be a single table with all the requested info and not a lot of cruft. You
should in general be displaying the whole result of the query to the user—if
there is too much cruft, trim it out by refining the SQL query itself.

To make this project doable for students who haven’t had experience with
writing GUIs, we’ll do the interaction via a text-based menu, giving it a bit
of a 1980s feel. In a “real” version of this, there would be a web or GUI
front end that would handle the user interaction and display results—but
that’s outside the scope of this course.

Your system should be able to handle all the requests indicated in the open-
ing section of the handout, as well as requests to do basic maintenance of
the system (e.g. adding and removing courses and sections from the system).
It doesn’t need to worry about authentication or security, or preventing one
student from seeing another’s listings, or anything like that.

Implementation notes

Spend time early in the project thinking about what data you’ll need to
represent, even for the parts that you don’t plan to implement until later.
It’s not impossible to change your data schemas later, but it’s easiest if you
get the structure of the data (mostly) right first.

Work on the queries and updates one at a time; and when you’re working
on one, start by constructing the SQL by hand to make sure you can find
an SQL statement that works, before trying to make the front end program
build and execute it.

Though SQL is generally case-insensitive, use the all-caps forms of at least
the keywords when you’re generating the SQL statements. This sometimes
makes it easier to tell the difference between the part of your code that is
in the general-purpose language and the part that’s in SQL.

5



CMSC262 Project 4: Registrar 26 November 2018

Rubric

Note that I am not able to spend a ton of time with your program (although I
will read it at least enough to verify your use of the SQLite APIs, I definitely
won’t do your debugging for you), so your documentation will need to tell
me anything I need to know to run and test your program. There need to be
clear instructions on how to run it in general as well as how to run each/all of
the tests and quickly verify that they ran correctly (and which rubric items
each one corresponds to). Having complete and correct documentation is
an easy 25 points, but if your documentation omits important info or tells
me the wrong thing, you’ll get less than full credit there.

After prep work (15 points), design work (10 points), and documentation
(25 points), there remain 100 points in the rubric, which will be awarded
according to the table below. Under each score, I show (for your conve-
nience) the total cumulative points if you get that item plus all the previous
points, and the letter grade this corresponds to. It is arranged roughly in
the order I suggest you attempt them, with the earlier ones being easier or
enlightening with respect to the later ones, but you can in general get points
for the later ones (if they work) without getting the earlier ones.

NOTE: if your code doesn’t compile, or immediately crashes when it’s run,
you will get zero of these points. Don’t let this happen to you!

Score Description

10
(60/D−)

As in prep work, .db file includes at least one table with
at least two columns and three rows; executable program can
access the database via API and print full contents of a table.

10
(70/D)

.db file has a clean schema that supports all (or almost all)
required requests for registrar project, and includes a useful
amount of sample data

Basic queries:

5
(80/D+)

Executable program can list all the courses on offer (this
term)

10
(85/C−)

Parameters in SQL statements are bound to values at run-
time, using appropriate library calls, with at least two pa-
rameter types (not necessarily in the same query).

5
(90/C)

Executable program can list all the courses from a particular
department (this term)

6



CMSC262 Project 4: Registrar 26 November 2018

5
(95/C)

Executable program can list all the courses taught by a par-
ticular professor (this term)

Basic updates:

5
(100/C+)

Executable can interact with the user to add items (profes-
sors, students, courses) to the database

5
(105/B−)

Executable can interact with the user to modify items that
are in the database

Complex queries and updates:

5
(110/B−)

Implemented at least one query involving joining data from
two tables, without duplicate columns or spurious data

5
(115/B)

List all the courses (this term) that meet during a range of
times (e.g. MWF during 1st through 4th period)

5
(120/B+)

Register a student for class(es) (for this term)

5
(125/B+)

Show a student the course schedule that they signed up for
(this term)

5
(130/A−)

Give a professor course lists showing all the students enrolled
in all their courses (for this term)

5
(135/A)

List all the courses (this term) that are not yet full

5
(140/A)

Give a student a transcript that shows all the courses they’ve
taken at this school, over all terms

5
(145/A+)

Give a student a list of all the courses (this term) that don’t
conflict with the courses they are already signed up for

5
(150/A+)

Implemented at least three of the “complex queries” and all
have clean front end that reflects user’s mental model

When you add each one, make sure you are not compromising the user
interface (i.e. doing something that confuses the user because it reflects the
internal structure and not the user’s mental model)—five of the points are
dedicated specifically to this.

The last three of the “complex queries” are each tricky for somewhat differ-
ent reasons. You may wish to work on them in parallel; if you get stuck on
one, try a different one.

You don’t have to do combinations of the above query types, even though
some of them might make sense (e.g. to let the user ask specifically for CMSC
courses that don’t conflict with their existing schedule, or all the courses in

7



CMSC262 Project 4: Registrar 26 November 2018

a time range that aren’t full). If you want to, feel free! But it’s not in the
rubric.

To guarantee that you get credit for everything you implemented, be sure
your documentation says what you did; and tell me how to interact with
the .db file(s) that you include in your handin to verify that each piece is
implemented.

Handing in

For both the prep work and the final version, hand it in as proj4 using the
handin script. The final version is due at 8pm on the due date.

Getting started with SQLite libraries

In C++:

The sqlite3 library and its header sqlite3.h is already installed on torvalds
and the lab machines. Go to https://www.sqlite.org/cintro.html ,
which documents the interface, and bookmark the URL.

It is a very C-style interface, and when it describes an “OUT” parameter,
this normally means that you will create a variable before calling the func-
tion, then give the address of that variable to the function (so that it can
fill in the value). For instance, to first open the database, you might write

int result;

sqlite3* db;

result = sqlite3_open_v2(argv[1], &db, SQLITE_OPEN_READWRITE, nullptr);

The actual return value of each function is a result code; in this case if
it is not SQLITE OK it means there was an error opening the file, and you
should exit the program gracefully. You should always assign the result of
the function call to a variable, and you should always check the value of
that variable to know if the command succeeded.

Use the v2 versions of the SQLite functions where they are available.

Look over the documentation and compare to the pseudocode on p. 3 of
this handout; try to see which functions correspond to which lines of pseu-

8



CMSC262 Project 4: Registrar 26 November 2018

docode (for instance, the line above corresponds to “open connection to
given database file”). Write code to call them, getting each to compile be-
fore tackling the next one.

The sample code that you’ll find online that uses sqlite3 exec is really
really not what you want to be looking at—among other things, it doesn’t
let you prepare statements and bind values into the parameters.

Note that the type of several parameters (notably in sqlite3 bind text)
is not a true C++ string, but a const char *, so if you’re using strings
you’ll need to use .c str() to get them into the right type for use in binding.

Note further that the return type of sqlite3 column text is const unsigned

char *, so you really can’t assign it to a string: first, it could return
nullptr (if the value in that column of the current row is NULL), and con-
verting that value to a string throws a runtime exception. Second, the
builtin string type is built to contain char, not unsigned char. The good
news is, printf and cout are both happy to work with C-strings of type
const unsigned char *. So, since you mostly shouldn’t be doing a lot of
processing of these result strings anyway, you can mostly just use variables
of the type const unsigned char * to hold them until you print them out.
(If you feel you need to go back and forth between string and this other
type, see me and I can help you make that work.)

When you compile your .cpp, you will need to explicitly link it against the
sqlite3 library:

compile myfile.cpp -lsqlite3

In Java:

The library for you is an implementation of a Java-standard JDBC API
specified in the java.sql.* package. Its documentation can be found right
in the standard Java API docs (which are installed, among other places, at
http://cs.longwood.edu/java/docs/api/ ).

The two particularly weird things you’ll have to do to start are: at the top
of main, make a call to

Class.forName("org.sqlite.JDBC");

This forces the class to be initialised at runtime. Second, to establish the
connection, you’ll call

9



CMSC262 Project 4: Registrar 26 November 2018

DriverManager.getConnection("jdbc:sqlite:" + args[0]);

which returns a Connection object. (The filename is prefixed with indica-
tions of its storage format and intended interface.) From there on out, you’ll
follow the API’s use of PreparedStatement, ResultSet, and so on.

Look over the documentation and compare to the pseudocode on p. 3 of
this handout; try to see which methods correspond to which lines of pseu-
docode (for instance, the line above corresponds to “open connection to
given database file”). Write code to call them, getting each to compile be-
fore tackling the next one.

When you compile your .java file, you don’t need to do anything special,
but when you run it you need to make sure your CLASSPATH includes the
SQLite library. You can do that by editing your .bashrc file, or else by
running your program as

java -cp '.:/usr/share/java/sqlite-jdbc-3.8.7.jar' MyProgram

In Python:

The SQLite library is included with python, but you do still need to import

it at the top of your code. From there, you can follow the API documentation
at https://docs.python.org/3.6/library/sqlite3.html .

The non-“shortcut” functions for the Python-SQLite interface involve an ad-
ditional level of indirection from the code relative to the pseudocode on p. 3:
from the database connection (a Connection object), you create a Cursor

object, which then is what performs the actual queries and updates. On the
other hand, there’s no separate “prepare statement” and “bind parameter”
steps; the cursor can execute an SQL statement directly.

In those three or any other:

There are squillions of pages on the internet about interfacing SQLite3 with
every programming language out there. Use them! What I’ve written above
is nowhere near a complete tutorial, just enough to get you started and have
some idea of what to search for.

10


