CMSC162 Intro to Algorithmic Design 11 Blaheta

Lab 10

Preview
30 March 2017

Today you’ll start development on a project that provides a (small) library
of classes to a potential user. Specifically, it will be a group of classes that
store elements without duplication—a set.

Sets

What is a set? Its fundamental properties are that it

e contains elements,
e does not count or distinguish duplicates, and

e does not guarantee anything about their order.

That means that it can’t, for instance, retrieve an element at a particular
index, because indices imply order and sets don’t (promise to) preserve
order. Think about it, and in your notebook, write down the key methods
that a Set class will have to have. (If you're a little stuck, you might refer
back to the UnsortedType definition in Chapter 3, which is not identical
but is quite similar.) There are three or four really important ones, plus a
few that would be more optional. Make sure to mark which ones would be
const.

Once you’re pretty confident about your list, write a file Set.h that encodes
this information in the form of valid C++ method headers. We would like
to make our Sets able to hold any type of element; at this point, it’s time
to start using templates for that. To make that happen, you just need to
precede the class header with

template <class Thing>
and then use Thing as the name of the type the Set would hold, whenever

you add a value or search for a value or anything like that. (Feel free to use
a different name than Thing.)



CMSC162 Lab 10 30 March 2017

Because our Set class is meant to define an interface, we want to mark its
methods as “pure virtual”: we’ve mentioned this in class, but implementing
it is just a matter of marking the method virtual and setting the body to
zero. That is, if you had written a method

int getSomeValue() const;
you would mark it pure virtual by writing
virtual int getSomeValue() const = O;

Write a simple test file called test_VectorSet.u that, for now, just #includes
your Set.h file and has an empty test suite. Compile that file to confirm
that your header has no errors.

Test cases

Now that we have a public interface, we can start planning our test cases. In
your notebook (not yet in the .u file), describe a few useful examples (which
will eventually become the test fixture). Then, write some sequences of
method calls, using those examples, that collectively verify that a Set would
correctly contain its elements, and does not count or distinguish duplicates.



