
CMSC160 Intro to Algorithmic Design Blaheta

Lab 12 Part 1
Lijnenspel

14 November 2019

The drill this week has two semi-separate parts: one to make sure you
understand the surface task (a puzzle game called Lijnenspel), and the other
part to get you started on using the 2D-vector stuff we’ve been talking about
in class. You can do the drill bits (ha!) in either order.

Drill 1: Introducing Lijnenspel

Lijnenspel1 is a puzzle played on a grid (similar to Sudoku or a crossword
puzzle or this month’s Problem of the Month). In Lijnenspel, the initial
grid contains numbers in some of the squares (as on the left below), and the
puzzle solver’s job is to draw horizontal and vertical arrows extending out
from the numbers to fill the rest of the grid. The total length in squares
of all the arrows emanating from a numbered square should add up to that
number, as in the solved example on the right:2

To be a proper Lijnenspel puzzle, the solution should be unique; and indeed
any such puzzle with a unique solution is possible to solve without guessing
(though the logic may require a bit of work). There are various tactics that
can be applied. For instance, if a particular square is only “reachable” from
one numbered square, there has to be an arrow connecting them; in the
following example, the second square in the top row and the fourth square
in the bottom row are only reachable from the 6—so we could immediately
“spend” six to draw arrows from the 6 to those two squares. That makes

1Also known as “Line Game”, but the authors of the site I pulled examples from are
Dutch, and so publish it under both names. “Lijnenspel” looks cooler, no? It’s pronounced
“LINE-en-spell”.

2This example comes from the description page at http://www.puzzlepicnic.com/

genre?lijnenspel .



CMSC160 Lab 12 Part 1 14 November 2019

the right column unreachable except from the 4; and this sort of logic can
continue through to complete the puzzle.3

To confirm you understand how the Lijnenspel puzzles work, work out at
least the first two on the lab worksheet linked from the course page. Bring
them with you to lab. Compare notes with other students!

Drill 2: 2D data

This part is more like the drills you’ve done in the past.

1. Start a program (.cpp file) with a main function that reads a single
int from the user. This will be the size of the Lijnenspel grid (which
is square). Make sure this much compiles. (As always, but especially
this week, try to compile as often as is reasonable, and start running
your code as soon as it’s feasible to do so.)

2. Create a 2D vector value that will store the grid. We will represent
individual cells in the grid with character values, so this will be a
vector of vectors of char. Note that it is initially empty (and you can
explicitly say so!).

3. Write loops to read in n×n characters from cin and add them to your
grid appropriately. You will almost certainly want this as a nested pair
of loops, the outer one working with the whole row and the inner one
going character-by-character to build the row.

4. To help you debug and understand your code, write a function to take
a given grid and print it to cout. This is a rare (for me) example of a
function where you actually do want to use cout inside the function.

3This puzzle by Zack Butler of RIT, who also provided the inspiration for this lab.

2



CMSC160 Lab 12 Part 1 14 November 2019

In your main, go ahead and call this function to print out the board
that has been read in from the user.

5. Write example files that correspond to either completed or non-completed
Lijnenspel puzzles. In a starting-position puzzle, each char will be ei-
ther a digit from 1 to 9, or a period ‘.’ for an open square. In a
completed puzzle, all the periods will have been replaced with one of
‘<’, ‘>’, ‘ >’, or ‘v’, depending on which direction their arrow was going.
(Displaying and storing a length-3 arrow as “>>>” instead of “-->” will
make our life easier later, but will still be easy to interpret visually.)

6. Write a function count numsquares that takes a given 2D grid (that
is, a vector<vector<char>>) and counts and returns how many of
the squares in the given grid are number squares. Two notes: first,
to check if a character is a digit, you’ll compare it to ’0’ (or ’1’)
and ’9’—note the single quotes. Second, in this function you’ll need
one for loop to go through the rows, and another for loop inside it
to go through each element in each row. In your main function, after
you’ve printed the grid itself, print how many of its squares are number
squares (i.e. the result of this function).

7. (How might you test that function?)

the task: more lijnenspel

in the latter part of the drills, you wrote some functions that technically
don’t rely on the fact that the grids are meant to be lijnenspel puzzles—just
that some of the grid squares would have number characters in them. for
the rest of the lab, we’ll actually encode some of the logic of the puzzles
themselves. while we won’t quite write a solver ourselves, we will do a few
things that would help out a human trying to solve them.

specifically, you’ll write functions to validate the puzzles themselves; to check
if there are any open squares; to verify whether a particular number-square is
“completed” (all its arrows drawn); and finally to check if an entire lijnenspel
puzzle is completed. you’ll be able to use the two puzzles given above and
the two you worked on as your test cases.

remember to make use of functions you’ve already written! in some cases
you will need to do so in order to get full credit.

3



CMSC160 Lab 12 Part 1 14 November 2019

sum numsquares computes the total of all the number squares in a given
grid. (So, for the Lijnenspel on the front page of this handout, it should
return 12: 1+3+4+4.) Note that since we store a number square as a
character rather than a number, you’ll have to adjust it before doing
math with it—if you remember that 'a' + 3 yields 'd', you might
not be surprised to find that '3' - '0' yields the actual int value 3.
Make use of this fact when computing your sum!

valid puzzle determines whether a given grid might be a valid Lijnenspel
puzzle, according to the following rule: in any valid puzzle, the total
number of number-squares, plus the sum of all those numbers, should
add up to the number of squares in the grid. If not, it’s not even a
valid puzzle. (Make sure to have an example that isn’t valid when you
test this!)

has open determines whether any of a given grid’s squares are open—that
is, represented by a period (rather than a number or arrow).

count arrows east considers a given grid starting at a given row and given
column position; and if that position is a number-square, it counts how
many '>' characters in a row appear immediately to the east (right)
of that position. (If the position is not a number-square, it just returns
zero.)

This function is simple in the basics but has several edge cases you
need to think about:

• The position may not be a number-square.

• The square to the immediate east of the position may not have a
'>' character in it.

• There might not be a square to the immediate east of the position.

• The arrows may continue all the way to the edge of the grid, and
your program should neither hang nor crash in this case.

If you are not sure what would be an appropriate header for this
function, you can use this one:

int count_arrows_east (vector<vector<char>> grid, int row, int column);

(There are other possible correct headers; see me if you’d like to talk
about them.)

4



CMSC160 Lab 12 Part 1 14 November 2019

count arrows west, count arrows north, count arrows south should
be pretty much like count arrows east but modified to look for their
respective arrows in their respective directions.

is numsquare completed should also consider a given grid at a given row
and given column position; and should determine whether the number-
square at that position is “completed”. A number-square is completed
if the count of the arrows in all four directions adds up to the number
in the square—neither too many (invalid) nor too few (incomplete).

is puzzle completed should take a grid and determine whether the given
grid is fully and correctly filled in. To do so, it must be a valid puzzle,
with no open squares, and for which every number-square is completed.

Handing in

As usual, use the handin program. Designate this as lab12. Hand it in by
4pm on Wednesday, 20 November.

RUBRIC (tentative)

General
1 Attendance at lab with drill done or question written down
1/2 Readme, evidence of testing
Drill
1 1–4: Reads and writes a 2D grid of char with user-spec size
1 5: examples of Lijnenspel, in spec’ed format, in .in files
1 4/6: Function takes 2D grid parameter, iterates over it
1/2 6: count numsquares correct
Lijnenspel
1/2 sum numsquares
1/2 valid puzzle uses other functions & works
1 has open

1 count arrows east
1/2 Starts at square, counts east, stops if end of grid
1/2 Returns correct answer

1/2 ...and west, north, south
1/2 is numsquare completed uses other functions & works
1 is puzzle completed uses other functions & works

5


