CMSC160 Intro to Algorithmic Design Blaheta

Lab 12
Lijnenspel
14 November 2019

The drill for this lab is given below. Come to lab on Thursday either with it
completed or with a specific written question in your notebook identifying
which drill step you got to and what about it you’re stuck on.

The drill this week has two semi-separate parts: one to make sure you
understand the surface task (a puzzle game called Lijnenspel), and the other
part to get you started on using the 2D-vector stuff we’ve been talking about
in class. You can do the drill bits (ha!) in either order.

Drill 1: Introducing Lijnenspel

Lijnenspel' is a puzzle played on a grid (similar to Sudoku or a crossword
puzzle or this month’s Problem of the Month). In Lijnenspel, the initial
grid contains numbers in some of the squares (as on the left below), and the
puzzle solver’s job is to draw horizontal and vertical arrows extending out
from the numbers to fill the rest of the grid. The total length in squares
of all the arrows emanating from a numbered square should add up to that
number, as in the solved example on the right:?

3 3
1 1 v

4 > 9 <4

4 dap |V

To be a proper Lijnenspel puzzle, the solution should be unique; and indeed
any such puzzle with a unique solution is possible to solve without guessing
(though the logic may require a bit of work). There are various tactics that
can be applied. For instance, if a particular square is only “reachable” from

L Also known as “Line Game”, but the authors of the site I pulled examples from are
Dutch, and so publish it under both names. “Lijnenspel” looks cooler, no? It’s pronounced
“LINE-en-spell”.

2This example comes from the description page at http://www.puzzlepicnic.com/
genre?lijnenspel .



CMSC160 Lab 12 14 November 2019

one numbered square, there has to be an arrow connecting them; in the
following example, the second square in the top row and the fourth square
in the bottom row are only reachable from the 6—so we could immediately
“spend” six to draw arrows from the 6 to those two squares. That makes
the right column unreachable except from the 4; and this sort of logic can
continue through to complete the puzzle.?

6 A 6
5 51> | 4
4 . <« 4
4 A 4
1 1 v

To confirm you understand how the Lijnenspel puzzles work, work out at
least the first two on the lab worksheet linked from the course page. Bring
them with you to lab. Compare notes with other students!

Drill 2: 2D data

This part is more like the drills you’ve done in the past.

1. Start a program (.cpp file) with a main function that reads a single
int from the user. This will be the size of the Lijnenspel grid (which
is square). Make sure this much compiles. (As always, but especially
this week, try to compile as often as is reasonable, and start running
your code as soon as it’s feasible to do so.)

2. Create a 2D vector value that will store the grid. We will represent
individual cells in the grid with character values, so this will be a
vector of vectors of char. Note that it is initially empty (and you can
explicitly say so!).

3. Write loops to read in n x n characters from cin and add them to your
grid appropriately. You will almost certainly want this as a nested pair
of loops, the outer one working with the whole row and the inner one
going character-by-character to build the row.

3This puzzle by Zack Butler of RIT, who also provided the inspiration for this lab.



CMSC160 Lab 12 14 November 2019

4. To help you debug and understand your code, write a function to take
a given grid and print it to cout. This is a rare (for me) example of a
function where you actually do want to use cout inside the function.
In your main, go ahead and call this function to print out the board
that has been read in from the user.

5. Write example files that correspond to either completed or non-completed
Lijnenspel puzzles. In a starting-position puzzle, each char will be ei-
ther a digit from 1 to 9, or a period ‘.’ for an open square. In a
completed puzzle, all the periods will have been replaced with one of
<7 N or ‘v, depending on which direction their arrow was going.
(Displaying and storing a length-3 arrow as “>>>” instead of “~->" will
make our life easier later, but will still be easy to interpret visually.)

6. Write a function count_numsquares that takes a given 2D grid (that
is, a vector<vector<char>>) and counts and returns how many of
the squares in the given grid are number squares. Two notes: first,
to check if a character is a digit, you’ll compare it to >0’ (or ’17)
and ’9’—mnote the single quotes. Second, in this function you’ll need
one for loop to go through the rows, and another for loop inside it
to go through each element in each row. In your main function, after
you’ve printed the grid itself, print how many of its squares are number
squares (i.e. the result of this function).

7. (How might you test that function?)



CMSC160 Intro to Algorithmic Design Blaheta

Lijnenspel examples

Do these two for sure:

3 6

User nyancharov, puzzlepicnic.com User edderiofer, puzzlepicnic.com

If you like, try one or both of these for an extra challenge!

Zac But’er, RIT User nyancharov, puzzlepicnic.com



