
CMSC160 Intro to Algorithmic Design Blaheta

Lab 10
Structs

31 October 2019

This week we practice creating our own struct type and writing some func-
tions that process it. The context will be (we imagine) that you are writing
a blog or social media site where users can post messages, and need to store
user information; your struct will represent one user, and store their login
name, their email address, and the number of posts they have made.

For the drill, we’ll build the type and write and test one function that
operates on that type.

1. First, start a file User.h and in it, define a struct with three fields,
to represent the login name, the email address, and the number of
messages posted (in that order). Include a comment above the struct
to describe what the purpose of the data type is.

2. Below the struct definition, add a declaration for the function hasPosted,
which determines whether a given user has ever posted a message. In-
clude a comment above the declaration with that description.

3. Start a file User.cpp with the appropriate #include and with a stub
definition for the hasPosted function.

4. Start a file test User.u with some appropriate tests for the hasPosted
function.

5. Edit your readme to add instructions on how to compile and run the
tests for the functions you’ll be writing (and also with the other stuff
that needs to go in documentation, if you haven’t already!).

6. Go back to the .cpp file and fill out the body of the hasPosted func-
tion.

Remember to look at the posted chapter as a reference; also, remember that
from time to time I post the photos of the whiteboard that I take at the end
of each class period—you should be able to mine those for information on
how to work with structs. Also see the files in /home/shared/160 .



CMSC160 Lab 10 31 October 2019

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about vim movement). If you’re not
stuck but haven’t finished the drill, work on that now. If you’re done with
the drill, continue on to the next section.

Vim FOTD: help!

Edit a file (such as one of your User files) using vim and type

:help

and hit enter. The session subdivides into an extra window, which has some
helpful text in it. Now type

:help dd

and see what it says. In general, any command-mode command can be
explained in this fashion. Likewise colon-mode commands (“:help :w”)
and command-line options (“:help -o”) and even settable configuration
options that you put in your vimrc (“:help 'incsearch'”).

To close the extra help window inside of Vim, use :q just like you normally
do to close a file—it will return the file you were editing to filling the entire
PuTTY window.

It turns out that Vim is a pretty vast program, with an immense number
of features. You’ll keep discovering them, and any time you hear about a
feature or suspect its existence, there’s a good chance you can find out more
about it using the :help system.

More functions on Users

Write sameName, which determines whether a given User’s login name is the
same as their email login (the part before the @). (Hint: the find function
of a string that we saw in class might be handy...)

Write emailDomain, which computes the domain (the part after the @) of
the email address of a given User.

2



CMSC160 Lab 10 31 October 2019

Write makeUser, which builds a new User value with given login name and
given email address. (What should its initial number of posted messages
be?)

Write includesUser, which determines whether a given vector of Users
includes one with a given login name.

Write countNewbies, which counts the number of users in a given vector of
Users who have never posted a message.

Handing in and rubric

Hand in as lab10. Due 4pm next Wednesday.

RUBRIC (Tentative)

1 Attendance at lab with drill done or question written down
1 Appropriate documentation throughout (readme, doc comments)
Drill (hasPosted)
1 Valid and correct struct definition, files compile and run
1 Test case file set up, compiles, good TC for hasPosted
1 hasPosted is defined correctly
Rest of lab
5 sameName, emailDomain, makeUser, includesUser, countNewbies

Each:
1/2 correct header, compiles, good test cases
1/2 correct definition

As before, remember that some points are available for good test cases even
or especially if those test cases are not passing.

3


