
CMSC160 Intro to Algorithmic Design Blaheta

Lab 7
Unit testing and debugging

10 October 2019

Below are the instructions for the drill. Pull out your hand traces, and in a
few minutes we’ll go over what you did with them; for now skip ahead and
read the FOTD about compiler options.

Your “drill” task this week involves reading a function I have written and
seeded with bugs, and doing some preliminary analysis on it.

1. First, copy this drill version into your working directory for this lab.
In your working directory, type

cp /home/shared/160/countDivisors-drill.cpp .

(don’t forget the lonely dot at the end to put it in the current direc-
tory).

2. It has several errors! Read through the file, but don’t fix them yet.

3. You’ll be tracing the code using a value of 12 for numToCheck. Before
you do so, write down what you think the correct return value should
be (and why).

4. By hand, trace the code using a value of 12 for numToCheck. Anytime
you encounter a bug:

• If it is an error that would generate a compiler error with a clear
fix (e.g. misspelled identifier), “fix” the eror in your head and
keep going with the trace.

• If it is an error that would generate a compiler error with multiple
syntactically valid fixes (e.g. unattached else), pick one such fix,
make a note of what you chose, and keep going with the trace.

• If it is an error that would crash the program at that point, stop
the trace and read the next drill step before continuing.

• If it is an error that you happen to spot, that you know would
generate a wrong final answer but would let the program continue
from that point, don’t fix it yet, treat it as-is, and keep going with
the trace.



CMSC160 Lab 7 10 October 2019

5. Anytime you get to a point in your trace where either the function
finishes or the program would crash: make a note of it; make a guess
at how to fix it (and write down the guess); and then start a fresh
trace with that fix in place. Don’t just restart the trace in the middle
with the changed lines!

6. If you get through two or three traces and still have not fixed every-
thing, that’s sufficient for now; there will be more on this to come later
in the lab.

Command line FOTD: compile options

Actually, just two quick things: a fact about compile, and two things you
can do with compile that will make our lives easier.

First, compile is happy to accept any number of input files at once:

compile sourcefile1.cpp otherstuff.cpp stillmore.cpp

Functions in any of those files can then refer to functions defined in the other
files. There are just two ground rules:

1. Across all the files, there needs to be exactly one main (or a main

replacement, as we’ll see later).

2. Functions used from other files need to have what the book calls a
“function declaration”. (We’ll see those in a little while too.)

Related to this fact, one convenient thing that we can do is tell the compile

command to only compile, and not also link—which means we can check for
compiler errors in a single .cpp file even if it doesn’t have a main function
in it, or in a single .u file (we’ll see those in a minute), even if it refers to
functions that aren’t defined yet. We do this with the -c option:

compile -c partialprogram.cpp

This will not generate an executable even on success, but will give you any
compiler errors lurking in that file.

The second convenient thing is that even when linking an executable, compile
doesn’t always have to generate a file named a.out. You can specify the
name of the executable by preceding it with -o:

2



CMSC160 Lab 7 10 October 2019

compile sourcefile1.cpp otherstuff.cpp stillmore.cpp -o programName

(Note, however, that this will overwrite whatever is in programName—don’t
accidentally type -o sourcefile1.cpp and overwrite your own code!) You
could then call the program as

./programName

We’ll see examples of that, too.

This is why I’ve been making you include “to compile” and “to run” instruc-
tions in your readme—the compile instructions may include multiple files or
additional options, and depending on the compiler options, the command
to run may vary. When you use the -o option, let me strongly encourage
you to copy the compile line and paste it into the window, or (once you’ve
done that once) use the up-arrow to re-execute the previous command; this
reduces opportunities to accidentally overwrite something.

As you go through this lab, take note of how I’ve written the instructions in
the provided readme—you can use them as a model for your own versions
in future labs.

Setup for the rest of the lab

In your working directory for this lab, type the following to copy several files
you’ll need for the lab:

cp /home/shared/160/lab7/* .

(again, don’t forget the lonely dot at the end to put it in the current direc-
tory).

There are four files here. Consider them in this order:

1. The readme. Read it.

2. The .h file. This is a place to collect information on what functions
are going to be defined. Read it; one of the functions is the one from
the drill, but you’ll be working with all three.

3. The .cpp file. This is where the functions are defined. At the top
is the (broken, buggy) function you saw in the drill; there is a stub

3



CMSC160 Lab 7 10 October 2019

for the second function and a (buggy) implementation I wrote for the
third. For now, just quickly skim this file (you’ll come back to it later).

4. The .u file. This is a kind of file you’ve not seen before. Open it in
vim and then continue to the next section.

Unci files and unit testing

Unit testing is the idea that we can (and should!) write test cases not just
for the entire program overall, but also for individual pieces (units) of it.
I’ve written a framework called Unci that supports unit testing with a clean
interface; this is not universal-standard C++ but is similar in flavour to what
happens in other unit-testing systems.1

In this lab, you won’t be building a .u file from scratch, just reading (and
later, adding to) the one I’ve provided, so rather than rigorously define the
Unci syntax here, I want you to read the file (and its comments) to get a
sense of its layout; and as you get the different functions working, and run
the provided compile command and run the test cases, refer back to the .u

file and ask lots of questions. (We’ll also be talking about this in class, of
course).

Once you’ve spent some time reading through the .u file—don’t worry about
deep understanding yet—continue on to the next section.

Fixing countDivisors

As you saw in the drill, countDivisors has a few bugs. Fix them—and each
time you make a change, leave a comment in the code OR write a line in the
readme to describe the error and how you fixed it. After you think you’ve
fixed each one, recompile the tests and run them.

Writing countWords

I’ve provided a declaration for countWords, and a stub definition, and a
bunch of test cases to help define its behaviour. Write the function. Focus

1Many unit testing frameworks exist, but the ones for C++ are often clunky, awkward,
and highly unforgiving to the beginner. Unci is better. :)

4



CMSC160 Lab 7 10 October 2019

first on getting a version that works with the “basic” test cases; move on to
the “zero” and “challenge” parts only once the “basic” block passes.

Testing and fixing secondHighest

The third function compiles and runs and seems to work, but the provided
test cases are inadequate and the function is subtly buggy. Add test cases
that more thoroughly test the function; don’t change the function until
you’ve added a test case that the existing definition fails and that thus
demonstrates the bug(s). Once you have such a test case, then work on
fixing the function.

Handing in and rubric

Hand in as lab7.

Rubric

RUBRIC (Tentative)

1 Attendance at lab with drill work visibly in notebook
countDivisors
1 Compiler errors have been resolved
1 Results are correct
1 All changes are marked
countWords
1 Loop to access all characters in phrase
1 Handles “basic” cases correctly
1 Handles “no spaces” cases correctly
1 Handles “challenge” cases correctly
secondHighest
1 Test case that causes original secondHighest to fail
1 Fixed secondHighest to work in all cases that meet preconditions

5


