CMSC160 Intro to Algorithmic Design Blaheta

Lab 3

Expressions and design
12 September 2019

Tinkerblock drill

Make a directory for this lab. In your directory for this lab, you’ll start
the early part of the design process, and move towards building a working
program.

To recap: I'm running a Tinkerblock factory; the Tinkerblock connectors
are long sticks of wood with square cross-sections (the fancy term for this
is a right rectangular prism, but you don’t need to know that). My core
question, which this program should answer, is what is the total surface area
of one run of these sticks? We decided in class that we would need three
inputs (the width of the square cross-section, the length of the piece, and
the number of pieces).

1. In the README.txt file (or in your notebook, but it will eventually
go in the readme file), write down at least a brief summary of the
problem statement.

2. In your notebook, work out at least two test cases for the problem.
Use actual numbers that are real-ish (if you measure in millimetres
they could all be integers :). At this stage all your computation can
be with the actual numbers of your test cases.

3. In your notebook, write out using generic variable names the compu-
tations you just did when you “did it by hand”. Pick good names for
the nameable intermediate values. This is your pseudocode.

4. Put your test cases into .in and .expect files and write a .cpp file
with the boilerplate stuff (#include, main, etc), and check that it
compiles and runs before you start adding more.

5. Add the pseudocode to your .cpp file piece by piece, writing code to
read in data, compute the required values according to your algorithm,
and print a result. Try to compile and test your code after every
meaningful chunk that you add.

CMSC160 Lab 3 12 September 2019

I’ll be circulating around the lab to answer questions. If you're stuck on
some part of the drill, ask me about that (and while you're waiting for me
to get to you, look at the next section about completion). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill, continue on to the next section. This week we have not one but two
features of the day!

Feature of the day: Saving you some typing

Tab completion on the command line

At your command line prompt, from your home directory, type
echo "This is a test" > quaffle-160-long-name

This will create what is presumably a new file named “quaffle-160-long-name”
in your home directory. Boy, that’s a long name. So type this:

cat qua

(no space at the end) and hit Tab. Since this is presumably the only file in
your directory that starts with “qua”, the command line will tab-complete
the filename for you. Helpful!

Sometimes, it can’t give you a complete filename, but it might still be helpful.
Type

cat la

and hit Tab. By now you shuold have multiple directories that start with
“la”; it should complete as far as it can (adding a b to make “lab”), and
then let you type the rest, and if you hit Tab again it will give you a list of
valid completions.

Tab completion is a feature of all modern command line shells. It has even
made its way into Windows’s Command Prompt. If you type enough to
uniquely identify a file, it will complete the filename for you, followed by a
space, so you can type the next argument or hit enter. If there are multiple
choices, it’ll fill in as much as it can, and then wait for you to finish.

CMSC160 Lab 3 12 September 2019

I trust that a well-cultivated sense of laziness will addict you to this feature
fairly quickly. Hitting Tab will become part of your typing muscle memory
within days—if not hours.

Completion in Vim

Open vim to edit a .cpp file you've already got lying around, such as
inorder.cpp from last week’s lab.

Now, go to a blank line in the file, enter insert mode (by pressing ‘i’)
and type “in” (minus the quotes), then hit Ctrl-N repeatedly (still in in-
sert mode). You will cycle through everything starting with those two let-
ters, which should at least include “include” and “int”, and possibly also
“input” or some other variable name depending on the program you're in,
eventually cycling back to just plain old “in”. Add a “c” after the “in” and
the Ctrl-N will only give you “include” since you've ruled out the others.
If you use Ctrl-P (“previous”) instead, it cycles in the reverse order.

I have encouraged you to use descriptive variable names, and this makes
doing so a lot more feasible. Basically, as you edit a file, vim will keep track
of all the words (variable names, function names, reserved words like “else”
and “double”) in that file. When you type part of a keyword, Vim knows
what other keywords in that file could match what you’ve typed; and Ctrl-
N and Ctrl-P will let you use these potentially long names without typing
them all out each time.

Go ahead and undo the changes you’ve made to this file (in command mode,
press ‘u’ a couple times until you run out of changes), and exit.

Another problem

Consider the following scenario:

Imagine the owner of a movie theater who has complete freedom
in setting ticket prices. The more he charges, the fewer the
people who can afford tickets. In a recent experiment the owner
determined a precise relationship between the price of a ticket
and average attendance. At a price of $12.50 per ticket, 120
people attend a performance. Decreasing the price by a quarter
($.25) increases attendance by 15. Unfortunately, the increased

CMSC160 Lab 3 12 September 2019

attendance also comes at an increased cost. Every performance
costs the owner $450. Each attendee costs another ten cents
($0.10). The owner would like to know the exact relationship
between profit and ticket price so that he can determine the
price at which he can make the highest profit.!

As with the tinkerblock problem, the program you write will not quite an-
swer the ultimate question (here, what price makes the highest profit), but
it will be a tool that lets someone inform such a decision by trying certain
input values and seeing what output values they result in.

Work through the problem-solving process again, this time on the theater
profit problem. Recall that these are the steps of the design process I laid
out in class yesterday:

Understand the problem: input(s)? output(s)? description?
Work through examples by hand and write them as test cases
Explain algorithm (pseudocode) including nameable values
Set up the boilerplate and type in the test cases

Encode algorithm in C++

Test

A S A w

There should be some written thing for each step in the process; some will
be reflected directly in the final program, others in other files such as the
readme or in test case files (including both the .in and its corresponding
.expect for each test case). The readme file should definitely include at
least the description and other documentation for the lab (see below).

Your test cases for this second one will need filenames that look different
from the earlier test cases! Devise an appropriate naming scheme for them.

When it comes time to write pseudocode, don’t forget that you need to be
using several intermediate values, each expressing one piece of the compu-
tation, rather than trying to cram all the computation in a monolithic (and
incomprehensible) one-liner.

! Adapted from Felleisen et al, “How to design programs,” §3.1

CMSC160 Lab 3 12 September 2019

Organising the readme

In your file named README. txt, there’s starting to be a few different things
that need to be in there. The name and date and assignment (here, “Lab 3”)
that we’ve been putting at the top of the .cpp file should go in the readme
too (or instead). There should be just one readme for the whole lab direc-
tory, but since the directory now contains files for two different programs,
it’s now becoming important for the readme to also contain instructions for
how to build the program as well as testing it. Here’s a checklist for the
stuff that should go in the readme this week:

Name, date, assignment

Description of tinkerblock program
How to compile it and run it

How to test it

Description of theatre profit program

How to compile it and run it

AN

How to test it

If you’ve decided not to print a prompt in your program, that’s fine, but
then your instructions for how to run it, in the readme file, should certainly
say what the user is expected to type!

Handing in

As before, the lab is due 4pm on Wednesday. Submit it as lab3.

CMSC160 Lab 3 12 September 2019

Rubric (tentative)

RUBRIC

1 Attendance at lab with drill done or question written down
Documentation (readme)

1 File exists, includes descriptions

1 Instructions for compile/run/test

1 Tests pass exactly OR are mentioned as not passing
Tinkerblock factory

1 Compiles, runs, reads correct required inputs

1y Test cases (worked out examples)

1, Appropriately named intermediate values

1 Prints correctly-computed result

Theater profit

1 Compiles, runs, reads correct required inputs

Ly Test cases (worked out examples)

1/, Appropriately named intermediate values

1 Prints correctly-computed result

