
CMSC160 Intro to Algorithmic Design Blaheta

Lab 2
Conditionals

5 September 2019

The drill for this lab is below. Come to lab on Thursday either with it
completed or with a specific written question in your notebook identifying
which drill step you got to and what about it you’re stuck on.

1. First, open up the repl.it assignment “Lab 2 drill”. In the pane on the
left, read in a grade (which will be a number, possibly with a decimal,
between 0 and 100). (No need to print a prompt here—and if you do
it’ll mess up my test cases!)

2. Below this, write an if statement that will print the letter grade “A”
for any grade that would get an A or A− in my course (hint: see p3
of the syllabus). (We’re ignoring the +/− for this drill just to make it
a bit less tedious. Otherwise we’d need twelve different conditions!)

3. Remember how you’re supposed to try running the program after each
drill step? If you haven’t yet, make sure to do that now (and fix any
errors so far).

4. Now use else if to print “B” for any grade that would get a B+, B,
or B−. Remember that any number that would get an A has already
been handled.

5. Do likewise for C and D.

6. Finally, use plain else to print “F” for any grade that does not appear
higher on the grading scale.

7. Did you remember to put comments at the top of the program? See
Lab 1 for a list of what to put there.

8. Then, if all the tests are passing, click submit.

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about dotfiles). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill, continue on to the next section.



CMSC160 Lab 2 5 September 2019

Command line feature of the day: Dotfiles

From your home directory, type

ls -a

It should list a bunch of files you don’t normally see that start with a period.
Many command line programs have a number of configuration options that
the user can set to control how they appear and how they behave. To make
these config files easily accessible, they were put in the user’s home directory;
and to make them unintrusive, they were named by convention with names
beginning with periods, which ls doesn’t normally list. Such config files are
popularly known as “dotfiles”.

Let’s start by doing some things to configure Vim, since we spend so much
time using it. Edit (using vim, of course) the .vimrc file. (It probably
doesn’t exist yet unless I’ve already helped you set it up.) Add the following
lines to it:

set number

syntax on

You’ll be typing configuration options into this file, and then seeing what
happens when you edit your C++ code and other files; this will be easiest
to see if you open a second terminal window, and in the left one edit the
.vimrc (in your home directory) and in the right one edit your C++ files (in
one of your lab directories).

Right away, when you edit a C++ file you should see a difference: the syntax
highlighting and the line numbers that you’ve seen when I edit code.

Now, in the .vimrc file, add the line

set laststatus=2

and save it. Now, edit a C++ file. Do you see the difference?

(Go ahead, look for it.)

The change is that there is a status bar on the (second-to-) last line of the
window which contains the name of the file (useful!) and, once it has been
edited, the symbol [+].

Here are a few other things to add to your .vimrc:

2



CMSC160 Lab 2 5 September 2019

set cindent shiftwidth=2

set showmatch

Try adding them, and see if you can figure out how they change vim’s
behaviour when editing a C++ file. We’ll talk about them in class tomorrow,
and you can see if you guessed right.

One last one: PuTTY defaults to a terminal window with dark background
and white letters; and you may notice that this makes Vim’s syntax colouring
a little hard to read. If so, you can add

set background=dark

to your .vimrc to improve the contrast there. (The default colour scheme
is designed for light backgrounds; you can ask for it explicitly as “set
background=light” if you prefer it.)

Another dotfile that you probably already have is a .bashrc, which controls
how your command-line shell runs. (The name of the shell is “bash”, which
stands for “Bourne-again shell”, a very geeky joke whose explanation you
can google for yourself.) From your home directory, edit this file.

You might have one already; depending on when your account was created,
it might have a lot in it or just a few lines. Some other time you might want
to read through it all, but for now I’ll just point out one small thing you
can edit: your prompt. That’s the text that is printed after every command
you execute. For now, make it something simple; go to the bottom of the
file and insert

PS1="Type something: "

Inelegant, but we’ll fix it in a minute.

Save and quit the editor. Now, the changes haven’t taken effect yet, be-
cause your current command-line shell was started before you changed the
.bashrc. One way to check how the changes went is to open a new terminal
window—this will make a new shell, using the new settings. Another is to
force the .bashrc to be reread by typing

source .bashrc

Not happy with the prompt? Let’s change it again. Edit the .bashrc file
again, and this time change the prompt to

3



CMSC160 Lab 2 5 September 2019

PS1="\h \w -\#-$ "

(That’s approximately what I use.) This gives you, respectively, the name
of the machine, the directory you’re currently in, and the “command event”
number, i.e. a running count of commands you’ve executed in this shell. You
probably don’t want to forget the space before the double quote.

After you try that, here’s another variation to try (a default on some sys-
tems):

PS1="[\u@\h \W]$ "

Ultimately, your choice of prompt is up to you. Experiment and find some-
thing you like!

Back to conditionals: testing

The remainder of this lab is all about thinking about conditional execution,
but it takes two major forms, each one as important as the other: one is
how to write them in a program, but the other is to think about how to
effectively test them. We’ll address that part first.

The program you’ll be writing—on the department server (via PuTTY,
probably)—should perform as follows: it will prompt the user to type three
names; it will read the three names; and then it will report whether they
are in sorted order or not. You can assume that each name has exactly one
capital letter (its first letter) and no spaces or non-alphabetic characters,1

which means that for any pair of them, the relational operators (such as <)
will correctly report which order they would be in, alphabetically.

With that much information, you can already write your test cases! In
the space on the next page, write out a few test cases. Each test case
includes both an input (three names), and the program’s corresponding
output. (Don’t forget that the program will be printing out a prompt first!)

1This is an extremely unrealistic assumption about names, and you undoubtedly know
at least a few people whose names would not work correctly with this program. Stay
tuned! We’ll talk more about this problem a little later in the semester.

4



CMSC160 Lab 2 5 September 2019

Input Output

That space above should have at least two test cases in it before you move
on. (Do you see why two is a clear minimum here?) As you go through the
lab, you may discover that there are additional relevant test cases that you
aren’t handling; always feel free to go back and add more if you think your
coverage is insufficient.

Typing in the test cases

First, on the department servers (in PuTTY), create a directory for this
lab (probably something like lab2). If you don’t remember how to create
a directory, consult Lab 0 (it’s in the summary on the back page). Then
change into that directory, so that all your subsequent work will be in there.

Edit a file called test1.in, and type in the input half of the first of your test
cases above. The names can either be on separate lines or just separated by
spaces (either way will not affect how your program runs). Save that and
then put the matching expected output into a file test1.expect.

Do likewise for your other test case(s), using test2 (and test3, etc, as many
as you need).

Writing these files now does a few things. First, you’ve thought about the
problem, its output, and what it means to be “in order” (or not). Second,
you’ve communicated to me and to anyone else looking at your directory
what you think the program should be doing. That’s important! And
finally, when you get to the point that you’re ready to run the program,
even partially, you’ve got a test system you can automate to let you know
what works and what you still need to work on.

5



CMSC160 Lab 2 5 September 2019

Writing the program

This may almost be an anticlimax at this point, but now’s the time to
edit your program file. The exact name of the file is not important (but it
should end in .cpp, for “C Plus Plus”)—something like inorder.cpp would
be appropriate here.

Start editing that file using vim. Enter insert mode, and type in the boil-
erplate stuff that goes at the top of every C++ program. Inside the curly
brackets for main, type in your prompt, create your variables, and use cin

to read values for them. If you need to look up how to do any of that, go
ahead! You can refer to your drill from this lab (on repl.it), either part of
last week’s lab, any of the stuff we did in lecture, or the textbook.

Once that’s all in (and maybe even before), you can compile and test your
program. You’ve seen before how to compile (consult Lab 0 if you’ve for-
gotten), but testing I just showed you briefly in class yesterday. Assuming
you’ve compiled the program, you should be able to type

./a.out < test1.in | diff -sZ test1.expect -

to run a test on it.2 At this time, the test is guaranteed to report that your
program isn’t printing the expected output (because your program isn’t
printing anything). That’s great! It means your tests are working.

I recommend editing a file called README.txt—eventually to contain all sorts
of documentation—that, for now, just has in it

./a.out < test1.in | diff -sZ test1.expect -

./a.out < test2.in | diff -sZ test2.expect -

and maybe more lines if you have more test cases. Then if you type cat

README.txt at the command line, you can copy-and-paste (in PuTTY, high-
light and then right-click) to just run them all.

2There’s a lot to unpack there, and you don’t need to worry about it much (you can
just always use lines of exactly this form), but if you’re curious: “< test1.in” says to use
the contents of the file as input instead of getting it from the keyboard. “| diff” says to
take the results and compute differences. “-sZ” are parameters to diff that say to say
something even when there are no differences (rather than just being silent) and to ignore
certain minor whitespace differences. “test1.expect -” says the things to compare are
the contents of that file, and whatever is printed by a.out.

6



CMSC160 Lab 2 5 September 2019

But again, at this point, your tests are not passing because you’re not print-
ing anything yet.

Deciding what to print

Your first approach to this should be to break off a smaller piece of the
problem: rather than “are they all in order?”, you can ask, “what’s one way
I can quickly see they aren’t in order?” That one way needn’t identify all
the ways three names can be out of order—just one of them.

For now, you can write an if that identifies that one case, and prints that
they’re out of order (using whatever message you wrote in your expected
output files).

Move forward along this line of reasoning: there’s more than one way for
the names to be out of order. But if none of them are out of order, then
they must all be in order. (Hint: it’s not a coincidence this falls right after
we covered else if.)

Remember to test your work. If you think of a different case, a different way
the names could be out of order, you can either:

1. write a test case that illustrates it, and then

2. update the program to pass the test case;

or,

1. update the program to work on the new situation, and then

2. write a test case that confirms it works.

I somewhat prefer the first way, but either way will get you full credit. You
do want to make sure your test cases catch up with your understanding of
the conditional execution, though.

Handing in

It’s due as usual on Wednesday at 4pm. Hand in using the handin command,
this time with assignment name lab2. (Check the end of Lab 0 if you don’t
remember how to run the command.)

7



CMSC160 Lab 2 5 September 2019

Rubric

RUBRIC (Tentative)

1 Attendance at lab with drill done or question written down
Drill (Grades)
1/2 Documentation at top of file
1 Program runs, prompts, reads values
1 At least one valid if comparing input and printing grade
1 Suitable else if structure
1 Comparison logic is correct to print correct grades
Checks order
1/2 Documentation
1 At least one pair of .in/.expect files w/ suitable contents
1 Test case coverage, and TCs pass or are noted in readme*
1 Program compiles, runs, id’s one case and responds correctly
1 Program responds to all cases correctly

* To get the point for good test case coverage, you have to EITHER pass
all test cases in the group OR indicate in the readme which ones aren’t
passing. This is your way of showing me that you’ve actually run your tests.
Someone remind me to talk about this in class on Friday.

8


