
CMSC160 Intro to Algorithmic Design Blaheta

Lab 0
28 August 2019

In this course, we’ll use two systems to develop our programming work. One
is a bit easier to get started with (but runs into limitations before too long);
the other has a bit more of a learning curve but leads to a much greater
degree of control over how your programs will work. Today’s pseudo-lab is
about getting both of them set up.

System 1: Repl.it

Check your email for the link I sent you, and follow it. It leads you to a site
called repl.it, which lets us get a quick start on programming. Go ahead
and set up an account there (the username doesn’t matter). By following
my link, you should be automatically connected to the classroom for this
course.

There is an assignment posted called “Hello world!”. Go to it, and work on
it. Follow the instructions. If you don’t have a textbook yet, look on with
someone near you who does (at least long enough to see the program that
it gives in section 1.4).

Once you have the program working, go ahead and submit it. If you get
stuck on getting it working by the time I finish handing out the materials
for the next section, submit anyway and move on—I’ll look at what you sent
in and can give you feedback.

System 2: Linux

The other system we’ll be using is the department server, running an op-
erating system called Linux. On that system, the two main tools we’ll use
are a compiler (g++) and an editor (vim), and we will use them under a
particular operating system (Linux). Those tools aren’t the primary focus
of the course, but like a chemistry course that needs to teach you how to
use the Bunsen burner or an art class that needs to teach you how to clean
the paint brushes, I need to spend a bit of time up front teaching you the
equipment so that we can get on to the main event. The compiler will show
up later this week; for now we’ll get a first look at the other tools.

CMSC160 Lab 0 28 August 2019

The very first order of business is getting logged in to the department’s
computer systems. I’ve created for each of you a remote account on our
machines. It is entirely distinct from your LancerNet account; please read
the Acceptable Use Policy while I’m handing out your individual account in-
formation. Once you’ve read the policy and have your account information,
you’re ready to log in.

I’ll walk the whole class through this at once, but the extremely brief version
is: you will use the program called “PuTTY”, to connect to a server named
cs.longwood.edu with a port number between 220 and 244. Once con-
nected, you’ll type in your username and password, and then you’ll change
your password. A longer version of these instructions is linked from the
course webpage, in case you forget, with some additional links to let you do
this from your own computer later.

Getting started on the command line

You should now have a window open with a connection to one of the CMSC
machines; it is a text-only connection, with a line or two of login information
and then a prompt. This prompt, and by extension this kind of text-only
window, is known as a “command line”. You interact with it by typing
commands, and it responds by giving you (text) results of those commands.

For instance, type

w

and hit enter. The w command gives a listing of everyone who is logged into
the system you’re on and some information about their session.

As in more graphical systems, some commands require extra information,
but rather than popping up a dialog box to request additional input, you
provide it up front. The finger command gives some information about
another user, and requires you to provide a username; if you type

finger dblaheta

you would see my information, but if you replace dblaheta with your own
username, it would show your info instead. (Try it!) In fact, you can also
try it with first or last names, and it will print out all accounts that match.

2

CMSC160 Lab 0 28 August 2019

When we talk about instructions like this, we often refer to the first part
(here, finger) as the command itself, and everything else (here, dblaheta
or whatever else you type) as the “command line argument(s)”.

In this course, essentially all your interactions with our department ma-
chines will be through the command line. I’ll introduce you to other useful
commands as the need arises, but feel free to investigate on your own as
well. There’s a lot out there!

Files and directories

As on other systems, your files can be organised into directories (which
may themselves contain other directories). When you start, your working
directory is the one known as your “home directory”; whenever you specify
a file, it’s assumed to be in the current working directory, which means that
one of the first things you need to learn to do is look at directories and move
between them.

To get started, type

ls

(that’s a lowercase L, not a one) and hit enter. This command lists the
contents of your home directory—which is currently empty.

Now, type

mkdir lab0

ls

and see what changed: there is now a directory for your work on lab 0.
Remember, though, that it is not yet your working directory— you are not
“in” it yet. Type

cd lab0

ls

and notice two things: first, the prompt changes to reflect the fact that you
are “inside” the lab0 directory now; and second, when you type ls, there
are no contents yet, since this is the directory you just made and haven’t
put anything in yet.

3

CMSC160 Lab 0 28 August 2019

At this point, read over the “Command line starter kit” at the back of this
handout. You should keep that page handy for your own reference, until it
becomes a bit more familiar.

Now to create a file.

Editing a file with vim

Just for starters, we’ll use vim to create a new file with some arbitrary stuff
in it. Type “vim sample.txt” (or use any other filename that catches your
fancy) and hit enter. The filename is the command-line argument, and if
the named file doesn’t already exist (like right now), it will be created as
soon as you tell the editor to save what you were working on.

The main thing you’ll need to remember to learn vim is that at any time
you’re either in “command mode” or “insert mode”. Insert mode is roughly
like what you’re familiar with from word processors—it lets you type in
text—but command mode is different. Command mode is where you do
the editing work, and when you’re in command mode, each letter actually
executes a command, like “remove this character” or “paste from the clip-
board” or “jump to the end of the file”. Vim always starts out in command
mode; switch to insert mode by pressing the i key. You’ll see that you’re in
insert mode because vim will now say -- INSERT -- on the lower left.

Just to fill space, type two or three lines of text. Any text. Be creative.

When you’re satisfied with your small masterpiece, you’ll press the Escape
key (in the upper left corner of the keyboard) to return to command mode.
There are a few things you can do from command mode (aside from returning
to insert mode); for instance, you can press x to delete a character or dd

to delete a line. If you do that but change your mind, you can press u to
undo (and press it multiple times to undo multiple things). If you undo too
much, you can press Control-R to re-do a thing.

Go ahead and use those commands to see how they work! You can also re-
enter insert mode to add more text by again pressing the i key (and return
from there to command mode by pressing Escape).

After you’ve tried all of those, you can write out the file (i.e. save it) and
quit the program by typing

:wq

4

CMSC160 Lab 0 28 August 2019

and hitting Enter.

Also at the back of this lab handout is a summary of this section. I want you
to keep that handy, too—until you fully internalise how vim works, you’ll
need to refer to the sheet to remember what you can do. Vim takes a bit
of getting used to. However, it is popular among technical people who are
willing to invest the time to learn its many tricks, because it rewards that
investment: once you learn vim’s controls, it makes most standard editing
tasks much faster than if you were simply using the arrows and spacebar
and delete key. Try to develop the mindset of being in command mode most
of the time, and only switch to insert mode to type something new, then
“escape” from it to move around the file and do further editing.

Anyway, now that you’re back on the command line, you can use ls to
verify that your newly-created file actually exists, and you can type “cat
sample.txt” (or whatever you called it) to display its contents.

Edit the same file again and add a few lines to it, and save the new version.

Then, in the same directory, make another file called students.txt, whose
contents are your name and the names of the two people sitting nearest you
in the lab (introduce yourself!).

Then, make a third file, called computer.txt, whose contents say what kind
of computer(s) you have and what system they’re running. (The main pur-
pose of this is really just to give you practice editing files, but the information
might come in handy too at some point.)

A program

Ok, now that you’re a little familiar with the new command line and editor,
go ahead and edit a file called hello.cpp and type in the program from
Section 1.4 and 1.5 (the same one you typed in the repl.it assignment).

When the book talks about compiling the program, you do that with a
command called compile:

compile hello.cpp

Then, to run the resulting program, you would type the command ./a.out:

./a.out

5

CMSC160 Lab 0 28 August 2019

Once you’ve got the program typed in, compile and run it. Call me over or
talk to a neighbour if any part of this is getting you stuck!

The last part of this lab is making sure you’re familiar with the handing-in
process—it will be more important in future weeks, of course, but for now
it’s useful to test out the logistics.

Handing in

Your work for this lab includes multiple files within the lab0 directory, which
need to be bundled together and put in a place I can find them; and there
is, as they say, a command for that.

First, though, make sure you are no longer “in” the lab0 directory. If you
type cd by itself and hit enter, it will return you to your home directory.
Then type

handin cmsc160 lab0 lab0

Note that you need to type lab0 twice: the first time, it is the name of
the assignment, and the second time, it is the name of the directory you’re
trying to hand in. (If you had called the directory something other than
lab0, you’d type that instead as the last command line argument.)

If all goes well, you should get a message to that effect, and it will list all
the files in the handin (specifically, the three short text files you wrote). If
something is amiss, there will be an error message to tell you what to fix.

6

CMSC160 Intro to Algorithmic Design Blaheta

vim starter kit
Eight things you must know to use vim

1. The vim editor is modal. The main two modes are “command” mode and Modal editing

“insert” mode. When you are in insert mode, everything you type goes directly
into the file. When you are in command mode, every key you hit is some
command, such as “undo” or “delete this character”. You always start out
in command mode, so you’ll have to enter insert mode before you can start
typing text.

2. The escape key (Esc in the upper-left corner of the keyboard) always gets Command mode:

Escyou back to command mode. If you are already in command mode, it does
nothing (except beep). If you don’t know what mode you’re in, hit escape and
then you’ll know you’re in command mode. If you get a little lost, you can
always hit ESC to get back to a known place. Escape!

3. From command mode, hit the ‘i’ key to enter insert mode. Insert mode: i

4. In command mode, hit the ‘x’ key to delete the character underneath the Delete char: x

cursor.

5. In command mode, hit ‘dd’ to delete the whole line the cursor is on. Delete line: d d

6. You can undo your mistakes! In command mode, hit ‘u’ to undo the most Undo: u

recent thing you did (and ‘u’ again to undo the thing before that, and so on).
Note that a whole insertion, from the time you hit ‘i’ to the time you hit
Escape, is considered one action—if you just need to delete a small amount of
text, use ‘x’ or ‘dd’.

7. In command mode, Control-R will redo the action you just undid. Accidentally Redo: Ctrl r

pressed ‘u’ and lost an entire insertion of text? Control-R (abbreviated Ctrl-R
or just ^R) will “undo the undo” and put the text back where it was. (Whew.)

8. If you’re in command mode, type :wq and hit Enter to save the current file Save and quit: :wq

and quit the editor.

It’s a little strange at first, but once you get the hang of using a modal editor it’s
actually pretty powerful. It gets a lot easier with practice.

CMSC160 Intro to Algorithmic Design Blaheta

Command line starter kit
Eight useful tips for the command line

Commands. All commands are executed by typing the name of the command.
Many commands also require the names of one or more files or directories;
these are separated from the command and from each other by spaces.

Working directory. At the command line you are always “in” some directory; to
print the name of the current working directory, type pwd and hit Enter .

Home directory. The directory you start in is called the “home directory” (and
its full name is usually of the form /home/yourname). You can always get
back to it by typing cd and pressing Enter . (Clicking your heels three times
is purely optional.)

Navigating directories. To change to a different directory, type cd followed by
the name of a directory. The special names .. (meaning the “parent” or “up
one” directory) and . (meaning the current working directory) can always
be used wherever directory names are expected (although “cd .” isn’t very
useful).

Modifying directories. To make a new directory, use mkdir with the name of the
directory to make. To remove an empty directory, use rmdir with the name
of the directory to remove.

Manipulating files. Four important commands are cat, cp, mv, and rm:
cat file1 [file2...] Display contents of file(s) on the screen
cp filename newname Copy existing file, with new name
cp file1 [file2...] dirname Copy existing file(s) into directory
mv oldname newname Rename file from old filename to new filename
mv file1 [file2...] dirname Move file(s) to a directory
rm file1 [file2...] Permanently remove (delete) file(s)

For all the versions that permit multiple filenames, you can use * as a filename
wildcard, e.g. rm *.o to remove all the files ending in .o.

Repeating commands. If you need to type a command that is the same as an-
other you’ve recently done, or similar, use the up arrow to see those commands
again. You can edit the line if necessary, and then press Enter to run that
command again.

Tab completion. If you press the Tab key while typing a filename, the command
line can sometimes fill in some or all of it for you.

