ERROR DETECTION: PARITY BITS AND CHECK DIGITS

Robert P. Webber, Longwood University

When data is entered into a computer, or when data is sent over transmission lines or cables within a computer, inadvertent errors can occur. Minute particles of dirt or grease can corrupt data on a disk, for example. Static on a telephone line can introduced errors into transmitted data.

It is very important to be sure that data has not been corrupted. Error detection checks for errors that occur in the transmission or storage of data. Error correction determines that an error has occurred and tries to fix the mistake.

A simple error detection method is based on the principle that if each bit pattern being manipulated as an odd numbers of 1 s , and a pattern is detected that has an even number of 1 s , then an error must have occurred. A parity bit is an extra bit that is associated with a word of storage. The value of 1 or 0 is assigned to the parity bit to make the total number of 1 s in the word odd if odd parity is used, and even if even parity is used.

For example, the ASCII code for 'A' is 01000001 . Using odd parity, it is 101000001. The extra bit is the parity bit, and it is set to 1 because 01000001 has an even number of 1s. On the other hand, the ASCII code for ' C ' is 01000011 . This code already has an odd number of 1 s , so the representation using odd parity would be 001000011.

With odd parity, an error condition is indicated by any nine bit pattern with an even number of 1 s .

Modern computer memories use built-in parity bits. We think of the basic unit of memory as the byte, consisting of eight bits. In reality, it is a byte plus a parity bit, or nine bits in all. Either odd parity or even parity can be used.

When something is stored in memory, the operating system sets the parity bit. Suppose it uses odd parity. When a value is retrieved from memory, the system checks its parity. If the parity is still odd, the system returns the value. If it is even, the system may return the value, but it will be accompanied by a warning that the value may have been corrupted.

The primary advantages of parity are its simplicity and ease of use. Its primary disadvantage is that it may fail to catch errors. If two data bits are corrupted, for instance, parity will not detect the error.

Here's another way to look at parity bits. Recall the xor operation:

x	y	xor
0	0	0
0	1	1
1	0	1
1	1	0

Notice that x xor y is 1 when exactly one of x, y is 1 and 0 otherwise. By extension, the xor of a bunch of bits of 1 precisely when there are an odd number of 1 s and 0 otherwise. This means that xor can be use to set parity. Just xor the bits in sequence, using the result from one xor as one of the operands to the next xor.

For odd parity, if the result of the final xor is 1 , set the parity bit to 0 (since there are already an odd number of 1 s). If the result is 0 , set the parity bit to 1 . Reverse the assignment for even parity.

The byte plus the parity bit is transmitted. The receiver puts the entire transmission (byte plus the parity bit) through xor. If we are using odd parity, and the resulting xor is 0 , we know an error occurred, since 0 indicates an even number of 1 s .

A check digit is a variation on the parity bit scheme. In its simplest form, it stores a number, and then stores the units digit of the sum of the digits of the original number. For example, suppose the number is 121208 . The sum of the digits is 14 , so we would store 4 in addition to the number.

This method has the same advantages and disadvantages as parity bits. A single error probably will be detected, but several errors may not be.

A variation of this technique was used in the early days of personal computers. No Internet was available to share programs in those days, and enthusiasts manually entered machine language numerical codes for programs. These were rows and rows of numbers, and it was easy to make a typing mistake. The source code would have a check digit at the end of each row, and the computer checked the sum of the data entered against the check digit to detect an error.

Many credit card companies use a check digit in their account numbers. If you have a card with a 16 digit number, for example, the last digit is probably a check digit calculated according to an algorithm called the Luhn formula, named for IBM scientist Hans Peter Luhn, who invented it in 1954. Here is how it works.

The check digit is the last digit on the right. Start with this digit.

1. Counting from the check digit and moving to the left, double the value of every second digit.
2. Sum the digits of the products together with the undoubled digits from the original number.
3. Set the check digit so the resulting sum ends in 0 (that is, so the resulting sum is a multiple of 10).

For example, suppose the account number is $241305862276081 x$, where x is the check digit. (I've grouped the digits by fours for ease of reading.) Calculate the check digit by following the steps of the Luhn algorithm.

Original number, with every second digit highlighted, starting on the right:
$241305862276081 x$
Double the highlighted digits:
$\begin{array}{llllllll}4 & 2 & 0 & 16 & 4 & 14 & 0 & 2\end{array}$
Add the unhighlighted digits of the original number and the digits of the doubled highlighted numbers:

$$
\mathbf{4}+4+2+3+\mathbf{0}+5+\mathbf{1}+\mathbf{6}+6+\mathbf{4}+2+\mathbf{1}+\mathbf{4}+6+\mathbf{0}+8+2+x=58+x
$$

To make the sum a multiple of 10 , set $x=2$. The full account number is 24130586 22760812 .

To check whether a given account number is invalid, do the Luhn calculations. If the resulting sum does not end in 0 , the number is not valid. For instance, check the account number 9413002516162853.

Original number, with every second digit highlighted, starting on the right:
9413002516162853
Double the highlighted digits:
$\begin{array}{llllllll}18 & 2 & 0 & 4 & 2 & 2 & 4 & 10\end{array}$
Add the unhighlighted digits of the original number and the digits of the doubled highlighted numbers:

$$
\mathbf{1}+\mathbf{8}+4+2+3+\mathbf{0}+0+\mathbf{4}+5+2+6+2+6+\mathbf{4}+8+\mathbf{1}+\mathbf{0}+3=59
$$

Since 59 does not end in 0 , the number is invalid.
The Luhn algorithm does not catch all possible errors. It was intended to detect obvious mistakes, such as reversing two digits when entering a number, or entering a digit incorrectly. A clever crook could easily devise a number that would pass the Luhn test! Nevertheless, most credit card companies use it when assigning account numbers, probably because computer programs can check it quickly. It provides a valuable first line of defense against invalid account numbers.

EXERCISES

1. Fill in the blank with the value of the parity bit using odd parity.
a. __ 01000110
c. __00100111
b. __ 00100000
d. __10000111
2. Repeat exercise 1, but use even parity.
3. The following bytes were originally written using odd parity. In which can you be sure that an error has occurred?

Parity bit Byte Parity bit Byte
a. 10010001
b. 101101100
c. 000111010
d. 001101011
4. Could an error have occurred in bytes other than the ones you detected in exercise 3? Explain.
5. The following bytes were originally written using even parity. In which can you be sure that an error has occurred?
Parity bit Byte
Parity bit Byte
a. 001101000
c. 010101100
b. 100101100
d. 101111110
6. Could there be errors in bytes other than the ones you detected in exercise 5? Explain.
7. Write the check digit for each number in the blank.
a. 32767_
b. 296
8. Write the check digit for each number in the blank.
a. 2824_
b. 3210_
9. The following numbers were originally written using a check digit. In which can you be sure an error has occurred?

Number Check digit
a. 54324
b. 106871
10. Could there be errors in the numbers in problem 9 that you did not detect using the check digit? Explain.
11. The following numbers were originally written using a check digit. In which can you be sure an error has occurred?

Number Check digit
a. 3141590
b. 2172822
12. Could there be errors in the numbers in problem 11 that you did not detect using the check digit? Explain.

MasterCard uses 16 digit account numbers, with the $16^{\text {th }}$ digit being a Luhn's formula check digit. In exercises 13 and 14, determine whether the given MasterCard account number is invalid.
13. 2418099634165066
14. 6205188354623917
15. Choose the final digit x so that $540012869063254 x$ is a valid Mastercard account number.

VISA also uses 16 digit account numbers, with the $16^{\text {th }}$ digit being a Luhn's formula check digit. In exercises 16 and 17, determine whether the given VISA account number is invalid.
16. 3887029011486720
17. 5019432676752895
18. Choose the final digit x so that $106228334165821 x$ is a valid Visa account number.

American Express uses 15 digit account numbers, with the right-most digit being a Luhn's formula check digit. In exercises 19 and 20, determine whether the given American Express account number is invalid.
19. 234198772934087
20. 625687549807930
21. Choose the final digit x so that $21306964405881 x$ is a valid American Express account number.

Diner's Club/Carte Blanche uses 14 digit account numbers, with the last digit on the right being a Luhn's formula check digit. In exercises 22 and 23, determine whether the given Diner's Club account number is invalid.
22. 62139456608299
23. 25560743968842
24. Choose the final digit x so that $2019328745635 x$ is a valid Diner’s Club account number.

