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When data is entered into a computer, or when data is sent over transmission lines or 
cables within a computer, inadvertent errors can occur.  Minute particles of dirt or grease 
can corrupt data on a disk, for example.  Static on a telephone line can introduced errors 
into transmitted data. 
 
It is very important to be sure that data has not been corrupted.  Error detection checks 
for errors that occur in the transmission or storage of data.  Error correction determines 
that an error has occurred and tries to fix the mistake. 
 
A simple error detection method is based on the principle that if each bit pattern being 
manipulated as an odd numbers of 1s, and a pattern is detected that has an even number 
of 1s, then an error must have occurred.  A parity bit is an extra bit that is associated 
with a word of storage.  The value of  1  or  0  is assigned to the parity bit to make the 
total number of 1s in the word odd if odd parity is used, and even if even parity is used. 
 
For example, the ASCII code for  ‘A’  is  0100 0001.  Using odd parity, it is 1 0100 0001.  
The extra bit is the parity bit, and it is set to  1  because  0100 0001 has an even number 
of 1s.  On the other hand, the ASCII code for  ‘C’  is  0100 0011.  This code already has 
an odd number of 1s, so the representation using odd parity would be  0 0100 0011. 
 
With odd parity, an error condition is indicated by any nine bit pattern with an even 
number of 1s. 
 
Modern computer memories use built-in parity bits.  We think of the basic unit of 
memory as the byte, consisting of eight bits.  In reality, it is a byte plus a parity bit, or 
nine bits in all.  Either odd parity or even parity can be used. 
 
When something is stored in memory, the operating system sets the parity bit. Suppose it 
uses odd parity. When a value is retrieved from memory, the system checks its parity.  If 
the parity is still odd, the system returns the value.  If it is even, the system may return the 
value, but it will be accompanied by a warning that the value may have been corrupted. 
 
The primary advantages of parity are its simplicity and ease of use.  Its primary 
disadvantage is that it may fail to catch errors.  If two data bits are corrupted, for instance, 
parity will not detect the error. 
 
Here’s another way to look at parity bits.  Recall the  xor  operation: 
 



 x y xor 
 
 0 0  0 
 0 1  1 
 1 0  1 
 1 1  0 
 
Notice that  x xor y  is  1  when exactly one of  x, y  is  1  and  0  otherwise.  By 
extension, the  xor  of a bunch of bits of  1  precisely when there are an odd number of 1s 
and  0  otherwise.  This means that  xor  can be use to set parity.  Just  xor  the bits in 
sequence, using the result from one  xor  as one of the operands to the next  xor. 
 
For odd parity, if the result of the final  xor  is  1, set the parity bit to  0 (since there are 
already an odd number of 1s).  If the result is  0, set the parity bit to  1.  Reverse the 
assignment for even parity. 
 
The byte plus the parity bit is transmitted.  The receiver puts the entire transmission (byte 
plus the parity bit) through  xor.  If we are using odd parity, and the resulting  xor  is  0, 
we know an error occurred, since  0  indicates an even number of 1s. 
 
A check digit is a variation on the parity bit scheme.  In its simplest form, it stores a 
number, and then stores the units digit of the sum of the digits of the original number.  
For example, suppose the number is  121208.  The sum of the digits is  14, so we would 
store  4  in addition to the number. 
 
This method has the same advantages and disadvantages as parity bits.  A single error 
probably will be detected, but several errors may not be. 
 
A variation of this technique was used in the early days of personal computers.  No 
Internet was available to share programs in those days, and enthusiasts manually entered 
machine language numerical codes for programs.  These were rows and rows of numbers, 
and it was easy to make a typing mistake.  The source code would have a check digit at 
the end of each row, and the computer checked the sum of the data entered against the 
check digit to detect an error. 
 
Many credit card companies use a check digit in their account numbers.  If you have a 
card with a  16  digit number, for example, the last digit is probably a check digit 
calculated according to an algorithm called the Luhn formula, named for IBM scientist 
Hans Peter Luhn, who invented it in 1954.  Here is how it works. 
 
The check digit is the last digit on the right.  Start with this digit. 

1. Counting from the check digit and moving to the left, double the value of every 
second digit. 

2. Sum the digits of the products together with the undoubled digits from the 
original number. 



3. Set the check digit so the resulting sum ends in  0 (that is, so the resulting sum is a 
multiple of  10). 

 
For example, suppose the account number is  2413 0586 2276 081x , where  x  is the 
check digit.  (I’ve grouped the digits by fours for ease of reading.)  Calculate the check 
digit by following the steps of the Luhn algorithm. 
 
Original number, with every second digit highlighted, starting on the right: 
 2  4  1  3  0  5  8  6  2  2  7  6  0  8  1  x 
 
Double the highlighted digits: 
 4      2      0      16    4     14     0      2 
 
Add the unhighlighted digits of the original number and the digits of the doubled 
highlighted numbers: 
 4 + 4 +2 + 3 + 0 + 5 + 1 + 6 + 6 + 4 + 2 + 1 + 4 + 6 + 0 + 8 + 2 + x = 58 + x 
 
To make the sum a multiple of  10, set  x = 2.  The full account number is  2413 0586 
2276 0812 . 
 
To check whether a given account number is invalid, do the Luhn calculations.  If the 
resulting sum does not end in  0, the number is not valid.  For instance, check the account 
number  9413 0025 1616 2853 . 
 
Original number, with every second digit highlighted, starting on the right: 
 9  4  1  3  0  0  2  5  1  6  1  6  2  8  5  3 
 
Double the highlighted digits: 
 18    2      0      4     2      2      4      10 
 
Add the unhighlighted digits of the original number and the digits of the doubled 
highlighted numbers: 
 1 + 8 + 4 +2 + 3 + 0 + 0 + 4 + 5 + 2 + 6 + 2 + 6  + 4  + 8 + 1 + 0  + 3 = 59 
 
Since  59  does not end in  0, the number is invalid. 
 
The Luhn algorithm does not catch all possible errors.  It was intended to detect obvious 
mistakes, such as reversing two digits when entering a number, or entering a digit 
incorrectly.  A clever crook could easily devise a number that would pass the Luhn test!  
Nevertheless, most credit card companies use it when assigning account numbers, 
probably because computer programs can check it quickly.  It provides a valuable first 
line of defense against invalid account numbers. 
 



EXERCISES 
 

 
1. Fill in the blank with the value of the parity bit using odd parity. 

 
a. __ 01000110 

 
b. __ 00100000 

 

c. __00100111 
 

d. __10000111 

 
2. Repeat exercise 1, but use even parity. 

 
 

3. The following bytes were originally written using odd parity.  In which can 
you be sure that an error has occurred? 

 
Parity bit Byte     Parity bit   Byte 
 
a.    1 10010001 
 
b.    1 01101100 
 

c.    0 00111010 
 
d.    0 01101011 

 
4. Could an error have occurred in bytes other than the ones you detected in 

exercise 3?  Explain. 
 
 
5. The following bytes were originally written using even parity.  In which can 

you be sure that an error has occurred? 
 

Parity bit Byte     Parity bit   Byte 
 
a.    0 01101000 
 
b.    1 00101100 
 

c.    0 10101100 
 
d.    1 01111110 

 
 
6. Could there be errors in bytes other than the ones you detected in exercise 5?  

Explain. 
 
 

7. Write the check digit for each number in the blank. 
 

a. 32767__ 
b. 296__ 



 
 

8. Write the check digit for each number in the blank. 
 

a. 2824__ 
 

b. 3210_ 
 
9. The following numbers were originally written using a check digit.  In which can 
you be sure an error has occurred? 
 

     Number   Check digit 
 
a.   5432           4 
 
b. 10687           1 

 
10. Could there be errors in the numbers in problem 9 that you did not detect using 
the check digit?  Explain. 
 
 
11.       The following numbers were originally written using a check digit.  In which can 
you be sure an error has occurred? 
 

     Number   Check digit 
 
a.   314159         0 
 
b.   217282         2 

 
12. Could there be errors in the numbers in problem 11 that you did not detect using 
the check digit?  Explain. 
 
 
MasterCard uses  16  digit account numbers, with the  16th  digit being a Luhn’s formula 
check digit.  In exercises 13 and 14, determine whether the given MasterCard account 
number is invalid. 
 
13. 2418 0996 3416 5066 
 
14. 6205 1883 5462 3917 
 
15. Choose the final digit  x  so that  5400 1286 9063 254x  is a valid Mastercard 
account number. 
 
 



VISA also uses  16  digit account numbers, with the  16th  digit being a Luhn’s formula 
check digit.  In exercises 16 and 17, determine whether the given VISA account number 
is invalid. 
 
16. 3887 0290 1148 6720 
 
17. 5019 4326 7675 2895 
 
18. Choose the final digit  x  so that  1062 2833 4165 821x  is a valid Visa account 
number. 
 
 
American Express uses  15  digit account numbers, with the right-most digit being a 
Luhn’s formula check digit.  In exercises 19 and 20, determine whether the given 
American Express account number is invalid. 
 
19. 234 1987 7293 4087 
 
20. 625 6875 4980 7930 
 
21. Choose the final digit  x  so that  213 0696 4405 881x  is a valid American 
Express account number. 
 
 
Diner’s Club/Carte Blanche uses  14  digit account numbers, with the last digit on the 
right being a Luhn’s formula check digit.  In exercises 22 and 23, determine whether the 
given Diner’s Club account number is invalid. 
 
22. 62 1394 5660 8299 
 
23. 25 5607 4396 8842 
 
24. Choose the final digit  x  so that  20 1932 8745 635x  is a valid Diner’s Club 
account number. 
 


